Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
medrxiv; 2024.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2024.03.18.24304401

RESUMEN

COVID-19 has been a significant public health concern for the last four years; however, little is known about the mechanisms that lead to severe COVID-associated kidney injury. In this multicenter study, we combined quantitative deep urinary proteomics and machine learning to predict severe acute outcomes in hospitalized COVID-19 patients. Using a 10-fold cross-validated random forest algorithm, we identified a set of urinary proteins that demonstrated predictive power for both discovery and validation set with 87% and 79% accuracy, respectively. These predictive urinary biomarkers were recapitulated in non-COVID acute kidney injury revealing overlapping injury mechanisms. We further combined orthogonal multiomics datasets to understand the mechanisms that drive severe COVID-associated kidney injury. Functional overlap and network analysis of urinary proteomics, plasma proteomics and urine sediment single-cell RNA sequencing showed that extracellular matrix and autophagy-associated pathways were uniquely impacted in severe COVID-19. Differentially abundant proteins associated with these pathways exhibited high expression in cells in the juxtamedullary nephron, endothelial cells, and podocytes, indicating that these kidney cell types could be potential targets. Further, single-cell transcriptomic analysis of kidney organoids infected with SARS-CoV-2 revealed dysregulation of extracellular matrix organization in multiple nephron segments, recapitulating the clinically observed fibrotic response across multiomics datasets. Ligand-receptor interaction analysis of the podocyte and tubule organoid clusters showed significant reduction and loss of interaction between integrins and basement membrane receptors in the infected kidney organoids. Collectively, these data suggest that extracellular matrix degradation and adhesion-associated mechanisms could be a main driver of COVID-associated kidney injury and severe outcomes.


Asunto(s)
COVID-19 , Enfermedades Renales , Lesión Renal Aguda
4.
medrxiv; 2020.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2020.05.04.20090944

RESUMEN

Importance: Preliminary reports indicate that acute kidney injury (AKI) is common in coronavirus disease (COVID)-19 patients and is associated with worse outcomes. AKI in hospitalized COVID-19 patients in the United States is not well-described. Objective: To provide information about frequency, outcomes and recovery associated with AKI and dialysis in hospitalized COVID-19 patients. Design: Observational, retrospective study. Setting: Admitted to hospital between February 27 and April 15, 2020. Participants: Patients aged [≥]18 years with laboratory confirmed COVID-19 Exposures: AKI (peak serum creatinine increase of 0.3 mg/dL or 50% above baseline). Main Outcomes and Measures: Frequency of AKI and dialysis requirement, AKI recovery, and adjusted odds ratios (aOR) with mortality. We also trained and tested a machine learning model for predicting dialysis requirement with independent validation. Results: A total of 3,235 hospitalized patients were diagnosed with COVID-19. AKI occurred in 1406 (46%) patients overall and 280 (20%) with AKI required renal replacement therapy. The incidence of AKI (admission plus new cases) in patients admitted to the intensive care unit was 68% (553 of 815). In the entire cohort, the proportion with stages 1, 2, and 3 AKI were 35%, 20%, 45%, respectively. In those needing intensive care, the respective proportions were 20%, 17%, 63%, and 34% received acute renal replacement therapy. Independent predictors of severe AKI were chronic kidney disease, systolic blood pressure, and potassium at baseline. In-hospital mortality in patients with AKI was 41% overall and 52% in intensive care. The aOR for mortality associated with AKI was 9.6 (95% CI 7.4-12.3) overall and 20.9 (95% CI 11.7-37.3) in patients receiving intensive care. 56% of patients with AKI who were discharged alive recovered kidney function back to baseline. The area under the curve (AUC) for the machine learned predictive model using baseline features for dialysis requirement was 0.79 in a validation test. Conclusions and Relevance: AKI is common in patients hospitalized with COVID-19, associated with worse mortality, and the majority of patients that survive do not recover kidney function. A machine-learned model using admission features had good performance for dialysis prediction and could be used for resource allocation.


Asunto(s)
COVID-19 , Insuficiencia Renal Crónica , Infecciones por Coronavirus , Lesión Renal Aguda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA